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Al~traet--For this paper the effect of curvature on heat transfer for fully developed turbulent flow in 
curved pipes on the condition of constant heat flux was studied theoretically and experimentally. In the 
analysis, a boundary layer is considered to exist along the pipe wall. Local shear stress and local heat 
flux at the wall are given on the basis of reducing the resistance (2s) and the Nusselt number (Nu,) formula 
for straight pipes to the local relation of friction and heat transfer. When the formulae for straight pipes 
are given as 2 s oc Re-1/m and Nu s oc Re I"- 1)/,,, it is shown that the dynamic similarity and also the simi- 
larity for heat transfer in curved pipes depend upon Re(a/R) ~/2. 

The resistance coefficient and the Nusselt number for curved pipes are obtained by putting ra = 4 or 
m = 5 .  

The N u ~ l t  numbers obtained from measurement of the velocity and temperature distributions in the 
air flow through the curved pipes of R/a = 40 and 18.7 are in good agreement with the theoretical results. 
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NOMENCLATURE 

w 1 at the centre of a cross section n. 
perpendicular to the pipe axis; 
01 at the centre of a cross section n o, 
perpendicular to the pipe axis; 
radius of the pipe; P. 
coefficient == - (aP/HaO);  Pr.  

specific heat of fluid at constant p. 
pressure; Q,. Q~. 
dimensionless velocity of the second- Qw. 
ary flow in the flow core; 
- q . ,  
=- (a2/v2)(zoCl/p); q , ,  

- T ~ "  T ;  qw. 
- G / t a  ; R .  
=- (T~ - Tm)/ta; Re ,  
# in a straight pipe expressed by the r, 
1~no power law; 
heat conductivity of fluid; T, 
exponent of w16 [equation (18)] ; Tin, 
constant giving exponent o f  R e  in the Tw, 
formula for ;t, [equation (9)] or Nu~ U, 
[equation (68)] ; 
Nusselt number, u, 
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- [2aQw~/k (T  w - Tin)]; 
constant giving # in the boundary 
layer [equation (81)]; 
constant giving g in a straight pipe 
[equation (61)] ; 
- (a21v2)(plp); 
Prandtl number. - pcpv /k ;  

pressure; 
heat flux in the fluid; 
heat flux at the wall to the fluid per 
unit area and unit time ; 
- Q~/k t ;  
- Q , / k t ;  

- Qw/k t ;  
radius of curvature of the pipe axis; 
Reynolds number. - ( 2 a W ~ v ) ;  

co-ordinate in radial direction in 
the cross section; 
time-averaged temperature; 
mixed mean fluid temperature; 
wall temperature; 
radial component of time-averaged 
velocity; 
- Ua /v ;  



38 Y A S U O  M O R I  and W A T A R U  N A K A Y A M A  

V, 

V, 
U $ , 

W, 
W, 

w., 
W*~ 

if, 

Y, 

circumferential component of time- z0,, r0o, 
averaged velocity; 
-- Va/v ;  ~,, 
circumferential component of dimen- 
sionless friction velocity ; 
axial component of velocity; Subscripts 
=- Wa/v  ; 1, 
mean velocity; b, 
axial component of dimensionless 
friction velocity; 
dimensionless velocity in a straight c, 
pipe or resultant velocity formed by f ,  
v and w; 
dimensionless friction velocity, m, 
=- (a/v) x/(rw/p); 
coefficient given by equation (67). 

Greek symbols 
c~, proportional coefficient in the form- 

ula for 2s [equation (9)] ; 
~c, proportional coefficient in the form- 

ula for 2c [equation (36)] ; 
fl, proportional coefficient in the form- 

ula for Nus [equation (68)-] ; 
7o, constant in equation (54); 
A, coefficient of correction term, 

[Suffix (A', Or,, Nu, 2) denotes the 
correction term for them] ; 

6, thickness of the boundary layer 
divided by a ; 

6,., coefficient in equation (34) giving 
6,.; 

~, eddy diffusivity; 
H, =- R /a ;  
rl, = r/a; 
0, axial co-ordinate; 
~c, exponent of Pr  in the formula for 

Nu~ [equation (68)] ; 
2, resistance coefficient, 

=_ [ ( -OPIROO)(2a/½pW2)]  ; 
v, kinematic viscosity; 
~, = l - q ;  
p, density ; 
z, temperature gradient along the pipe 

axis ; 
zw, frictional stress at the wall ; 

shear stresses in the direction of 
pipe axis ; 
circumferential co-ordinate in the 
cross section. 

S, 
6, 

value in the flow core region; 
value at the boundary between buffer 
layer and turbulent core in a straight 
pipe; 
curved pipe ; 
value a t  the position where v in the 
boundary layer becomes maximum; 
mean value around the periphery 
(~b = - ~ ,-~ n), (except gin, T,., W,.); 
straight pipe; 
value at ¢ = 6. 

INTRODUCTION 

IN A CURVED pipe, the centrifugal force of a 
flowing fluid produces a pressure gradient in a 
cross section. This pressure gradient yields 
a pair of secondary flows. The secondary flows 
cause a larger amount of pressure drop or heat- 
transfer rate than those for a straight pipe. To 
evaluate the effect of curvature on the heat- 
transfer rate is of fundamental importance for 
the design of heating or cooling coils and for 
other industrial requirements. 

In the previous paper [1], heat transfer in 
a fully developed laminar flow is discussed. 
The velocity and temperature distributions in 
the curved pipe are measured. These profiles 
show that a thin boundary layer is formed along 
the pipe wall, Theoretical analysis is done by 
dividing the flow and temperature field into 
a core region and the Boundary layer. The 
formulae of Nusselt numbers applicable in a 
fairly wide range of Dean numbers [K -= Re 
x/(a/R)]  are suggested. 

For a turbulent flow, the empirical formula of 
Jeschke [2] has been quoted in many books [3]. 
Others can be found in the reports of Pratt [4], 
Seban and McLaughlin [5], Rogers and Mayhew 
[6]. These results have been derived from 
experimental data utilizing a few cases of curva- 
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ture to pipe radius ratio. The fluid is air or 
water. The heat-transfer rate is obtained by the 
measurements of the bulk mean temperature 
at the fixed two stations and the total heat flux 
from the pipe wall to the fluid between the 
stations. 

This method is conventional for heat-transfer 
experiments in pipes or conduits, but provides 
little information about heat-transfer processes 
inside the fluid. The effect of curvature is far 
less evident in a turbulent flow than in a laminar 
flow. Therefore, in order to establish a general 
correlation, an amount of data from different 
cases ofradius ratio and a high degree of accuracy 
in experiments are required. It is thought that 
there should be a shorter way to approach the 
general formula of Nusselt numbers. The most 
effective way is to examine the velocity and 
temperature distributions inside a pipe theoretic- 
ally and experimentally, and show how the 
Nusselt number is affected by curvature through 
the distortion of distribution profiles. Up to 
the present, theoretical study of the problem 
has scarcely been made. 

The only theoretical analysis of the flow 
resistance in curved pipes was done by Ito [7]. 
The boundary layer concept is employed. The 
resistance formula is given in an asymptotic 
form which gets nearer to the empirical cor- 
relation in the region of large Reynolds numbers, 
like Adler's analysis for laminar flow [8]. 
However, there is a difference between the 
theoretical results and the experimental results 
over the practical range of Reynolds numbers. 
The procedure of calculation is so complex that 
it does not fit the purpose of applying the 
analysis of the flow field to the heat-transfer 
problem. 

In this report, variations of physical properties 
with temperature are not taken into considera- 
tion. The theoretical analysis for a turbulent 
flow in curved pipes is made in a manner which 
is rather simple and suitable for the discussion 
of heat transfer. Heat transfer in a fully developed 
temperature field on the condition of constant 
heat flux is discussed theoretically. The experi- 

ments were made to investigate the velocity and 
temperature distributions in air flow. The 
Nusselt numbers were also obtained as the 
experimental results. 

THEORETICAL ANALYSIS OF THE FLOW IN 
A CURVED PIPE 

In the present paper, the far side of the wall 
from the center of curvature is called the outer 
wall, and the near side is called the inner wall. 
In a curved pipe, the fluid in the central part is 
driven toward the outer wall by centrifugal 
force. The fluid near the wall flows along the 
wall surface to the inner wall. Thus in the pipe 
the regular secondary flow forms a pair of 
vortices in a cross section. When the balance of 
forces in the direction of the pipe axis is con- 
sidered, it is noticed that stress caused by the 
secondary flow shares with other kinds of 
stress the role of counter force to the pressure 
gradient. 

The system of co-ordinates is taken as shown 
in Fig. 1. The shear stresses in the direction of 

R 

,~neor stresses in the direction 
of ~ exerted tAoon o small element 
of the fluid 

FlG. 1. System of co-ordinates. 

the axis (0) are %,, %,. All quantities are ex- 
pressed in non-dimensional form, as follows: 

~l = r /a ,  H = R / a ,  u = U a / v ,  

v = V a / v ,  w = W a / v ,  P = a2 P 

Y" = k--e)' ¢'*= 

When the flow is steady and fully developed, the 
pressure gradient along the pipe axis is constant. 
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The constant in a dimensionless form is written 
as C =- - (OP/HOO).  It is assumed that r / R  ~ 1, 
and all geometrical small terms are omitted. 
Then, the force balance equation is expressed as 
follows : 

c3foq, 8 (tlfo,) + - C. (1) 

The shear stresses are 

g3W U ' W' } fo ,  = O--q - uw - 

(2) 
OW V' W'. 

fo~, - r l O O  vw - 

In this equation u, v, w are the time-averaged 
mean-velocity components; u', v', w' are the 
components of turbulent fluctuation; and u'w', 
v 'w' are Reynolds stresses. 

When the flow is turbulent, a mean velocity 
is always large enough to produce the secondary 
flow which shows a remarkable effect in 
determining the main  feature of the velocity 
distribution. Only the shear stresses uw, vw are 
supposed to be predominant over a cross 
section of the pipe except a thin layer along the 
wall. Hereafter, the region where the stresses 
caused by the secondary flow are predominant 
is called a core region. The thin layer next to 
the wall where all kinds of stresses cannot be 
ignored is called a boundary layer. The region 
of the boundary layer is represented by 6 which 
is the dimensionless thickness divided by the 
pipe radius a. 

When the secondary flow is brought into 
consideration, its appearance is imagined as 
follows. The fluid in the core region flows 
towards the outer wall, then enters the boundary 
layer. There is a return flow toward the inner 
wall in the layer. The conceivable stream lines 
are shown in Fig. 2. In these circumstances, 
the work done by pressure in the direction of the 
pipe axis (which is called 0-direction) is lost by 
turbulent and laminar diffusion mainly in the 
boundary layer. When the pressure gradient 
in 0-direction is constant, 6 representing the 

o 

FIG. 2. Secondary flow streamlines. 

thickness of the layer of diffusion is invariable 
in 0-direction, and varies only in a cross section. 

i .  T h e  ve loc i ty  dis tr ibut ions in the core region 
In this region the velocity components u, v, 

w, are denoted by Ul, Vl, Wl respectively. The 
shear stresses are expressed by 

fo.  = - u l w l ,  Jo• = - v l w l .  (3) 

The relations between the centrifugal force 
of fluid and the pressure gradient in a cross 
section are 

2 8 P  2 8P  
wi sin qJ - (4) 

H cos O = ~q, H r/t? 0" 

Elimination of the pressure terms from these 
equations yields the following relation for wt : 

8wl  8wl  
cos ~k ~ + sin qJ ~ = 0. (5) 

The equation of continuity is written as 

8 8vl  
r/O~ (r/u,) + q--~ = 0. (6) 

The velocity components Ul, vx, w~ satisfying 
equations (5) and (6) are put in the most simple 
forms as follows : 

ul = Dcos~O ] 

vl = -Dsin~k I (7) 
w 1 = A + (C/D) rl cos 

where A and D are constants. The secondary 
flow in the core region is expressed by a uniform 
flow toward the outer wall. 
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2. The shear stress at the wall and the velocity 
distributions in the boundary layer 

The distance from the wall is denoted by 
= 1 - ~/. As shown in equation (7), the velocity 

at the edge of the boundary layer (¢ = 5) varies 
with the angle qJ in a cross section. The charac- 
teristics of the flow in the boundary layer are 
determined by the velocity at ~ = 5. Since the 
local shear stress at the wall depends on the 
velocity in the boundary layer, zw also varies 
with ft. The shear stress % is expressed non- 
dimensionally by the friction velocity # * =  
(a/v) x/(zw/p). 

The circumferential component (~h-compon- 
ant) of the velocity in the boundary layer v has 
a distribution like that shown in Fig. 2. The 
distance from the wall where v becomes the 
maximum value v: is denoted by ~:. 

The axial velocity component w at ~ = ~: is 
written as w:. The components vy and w / fo rm  
a velocity fff as shown in Fig. 3. The relation 
between if*, ey and i f /migh t  be considered to 
be obtained from the law which describes the 
relation in a straight pipe between the shear 
stress at the wall, the distance from the wall and 
the velocity at the position. The law in regard 
to a straight pipe may be derived from the 
resistance formula. The resistance coefficient 
2 is defined as 

2 =  ( - ~ . ~  2a (8) 
k ~z/ 1 2 ~.p W ,, 

where z is the co-ordinate taken along the pipe 
axis. We use the suffix s to indicate that the case 
is one of a straight pipe. The formula for a 
straight pipe is expressed in general terms as 

2s = a Re -" /" )  (9) 

where 

Re = 2aW,,,/v. 

For the appropriate range of Reynolds num- 
bers, ~ and m are determined in order to approxi- 
mate the actual relation between 2s and Re. 
The commonly used value of m is 4 or 5. 

When m is taken as 4, the value of ~t is 0.316 

~': x , l w :  

¢1_ ¢: 4 v: ~-- 

Fro. 3. Velocity components and resultant velocity near the 
pipe wall. 

after Blasius's resistance formula which is valid 
for Reynolds numbers less than l0 s . 

When m is taken as 5, the value of a is 0"184. 
A form of the velocity distribution correspond- 
ing to equation (9) may be deduced by means 
of plausible assumptions [9]. As the result, 
the velocity distribution is expressed by the 
1 / (2m-  1) power law. The Reynolds number 
Re in equation (9) is calculated by using this 
velocity distribution. On the other hand, the 
total shear stress at the wall keeps balance with 
the pressure gradient. Then, from equation 
(8) 2 is expressed by the stress at the wall zw and 
Re. We can now deduce % from equation (9). 
In a non-dimensional form this is written as 

if,2 ( a ~ ( z w ~ _  a 
~,, V2) k P )  23+(1]m' 

F!2m- 
× [m-(4tn -- 1 ) . ]  ~v~Zm-,),m ~;(,/,,) (10) 

In order to make the analysis for a curved 
pipe on the basis of equation (10), the velocity 
component w in the boundary layer is put in 
the following form so as to satisfy the boundary 
conditions: 
at 

and at 
~ = 0 ,  w = 0 ,  

= ~ ,  w = w16. 

w = w~6  ( U ~ )  1 / ( ~ ' -  ~) (11) 
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The conditions for v are the boundary condi- 
tions and the condition of continuity. The 
boundary conditions are 

at 

and at 

~ = 0 ,  v = O ,  

~ = 3 ,  V = V  l. 

In consideration of the flow field in a cross 
section shown in Fig. 2, the flow rate of the 
secondary flow through the plane B-O is to be 
equal to that through the plane A-B.  The 
condition of continuity is 

v d~ = D(1 - 3) sin ~b. (12) 
0 

So as to satisfy these conditions and follow 
the 1 / ( 2 m -  1) power law near the wall, v is 
written as 

v = - O s i n ~ ,  m -  1 - 

1 (m2  1) ( ~ ) ]  + - (13) 
m - 1  

From equation (13) v: and ~: are obtained. 
Then, w: is obtained from equation (I I). 

A friction velocity component in the direction 
of the pipe axis (0-direction) is 

w.  2 = w£ k ,2  (14) 
Wf 

where 

, :  = + w}). 

Supposing that v ,~ w, we may write that 
~:  ~ w:. With the aid of eq~uation (11), ~,: and 
4: in equation (10) are replaced by w16 and 3. 
Then, equation (14) becomes 

w, 2 ~ [ ( 2 m -  1)2] (2m-l)/" 

= f i  Lm(4m- 1)J 

w(~ "- ')/" 3 - ( ' " ) .  (15) 

In like manner a friction velocity component 

in the circumferential direction 0p-direction) 
is given by 

I),2 Vf ¢v,2 ~m 
w: 21+( ' / " ) (2m-  1) 

r(2m - 1)2](2m-1)/m 

w(~-l)/"3-("+l)/"Dsin~O. (16) 

From equation (7) 

wlo = A + (C/D)(1 - 3)cos ~b. (17) 

It is assumed that C/D is sufficiently small 
compared with A, and 3 ,~ 1. Let the power of 
wl~ in equations (15) and (16) put in a general 
symbol M and, the following expansion is 
made in order to simplify the later calculation, 
and only the first and second terms in the 
bracket are taken into account. 

w ~ = a U [ 1  + M ( C / A O ) c o s ~ k + . . . ] .  (18) 

The results obtained finally show that the 
ratio C/AD is, for example, about  0.4, when 
m = 4. In this case, M in equation (15) is ¼. 
The third term in the bracket of equation (18) 
becomes 

½ x ¼ x ~C/AD) 2 cos 2 ~ - 0"1 cos 2 ~k. 

This is reduced to 0"05, when the qJ-averaged 
effect is considered. Moreover, ( 1 -  6) 2 is 
multiplied to this term in the strict expansion. 
These reasons suggest that the elimination of 
terms after the third is equivalent to the omission 
of only a magnitude of a few per cent. 

Since both the velocity distribution in the 
boundary layer and that in the core region 
are established, the mean velocity in the pipe 
may be calculated. The dimensionless mean 
velocity is 

;t 1--~ 

w,. = (Re~2) = (l/n) { S ~ w:/dr/d~9 
--rt 0 

~t 6 

+ ~ Sw(1 -- ~)d~d~0}. (19) 
- - ~ 0  

The variation of 3 with ~0 is supposed to be 
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very small. Hence, 6 is replaced by its mean. 
value 6,.. 

Substitution of equations (7) and (11) into 
equation (19) yields the relation between A and 
8 m. 

Re 1 
A = 2 1 - (1/m)8,. + [l/(4m - 1)]62. (20) 

Now we consider the region bounded by the 
pipe wall and two cross sections, apart by a 
distance R dO. The equation describing balance 
of forces exerted upon this portion of fluid is 

i f f O-~ordrd@= %ad@. (21") ~ 
-nO -n  

Use of the dimensionless quantities gives the 
following relation between C and w .2 averaged 
around the periphery. 

C = 2 w  .2 .  (22) 

Equations (18) and (20) are substituted into 
equation (15). Then, substitution of equation 
(15) into equation (22) gives 

[ ( 2 m -  1)2] (2m-1)/m 
C = --~ L - ~ m  -__- ~]  Ret2m-X)/m 

[1 2 m - 1 6 m  1 (23) X 8~-n (l/m) + m2 . 

Here the terms having magnitudes of order 
less than 82 are neglected. 

3. The boundary-layer momentum equations 
The unknown quantities are now reduced 

to D and 8. They are determined by solving 
the momentum equations of the boundary 
layer in the '-a~ial and circumferential directions. 

The integrali~luation expressing the equilib- 
rium of momentum in the direction of the pipe 
axis (0) is 

W * 2 = w l a ~ - ~ f v d { - f - - ~ f v w d , + C 8 .  (24) 
o o 

Equations (7), (11) and (13) are substituted 
into equation (24). Only the largest terms are 

taken into account, and 6 is replaced by 6m. 
Equation (24) becomes 

W .2  = E + F cos ~, (25) 
where 

t 6m - 1 cos2 
E =  2 m +  1)(4m- 1) 

4m(2m - 1) 1)sin2@ 1 C, (26) 
+ (2m + 1)(4m - 

6m - I 
F = (2m + 1)(4m - 1)AD. (27) 

The mean value of equation (25) around 
tReperiptlm'y(~ = - n  ~ n) is C/2 and satisfies 
equation (22). The variation of E with ff is 
small compared with F cos~,  so that E is 
taken as constant and replaced by its mean 
value C/2. 

On the other hand, w .2 is written in the 
following form from equation (15) 

C ~(2m-  1) F(2m- 1)2] '2r'-l)/= 
w*2 = 2- + 23+---71/-~)m Lm(am - 1).J 

1 
x a (r'-''/m C ~ cos $ (28) 

where the expansion (18) is used. 
Since w .2 of equation (25) should be identical 

with that of equation (28), F must be equal to 
the coefficient of cos ~ in equation (28). When 
the largest components of A and C in equations 
(20) and (23) are substituted, the following 
relation between D and 6= is found. 

D26tm2/m ) = ~t2(4m 2 - 1)(4m - 1) 
2Vm(6m- 1) 

F (2m-  1)2][2(2m- 1)]/" 
X [~-~-m~__-~]  Re  I2(m-l)l/m. (29) 

The other relation between D and 6 is 
obtained from the integral equation of momen- 
tum in the circumferenfiat direction 

v * z -  ~ ,~P~d~ sin ~ / f  w2d~ H 

o o 
6 6 

0 o@ Ii 2 d -b v,;fod¢ (30) 
o o 
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and the one in the radial direction (q-direction). 
1-6 

p~ = '~1 cos Ip dr# - CHO. (31) 
H 

0 

Equation (31) is substituted into equation (30). 
The pressure gradient in equation (8) that 

defines the resistance coefficient 2 is expressed 
non-dimensionally as C given by equation (23). 
Therefore, for the purpose of obtaining 2 it 
is necessary to know only the mean value of 
thickness 6. The details about the variation 
of 6 with ~b are not required, if 6,. can be de- 
termined without integration of 6 with respect 
to ~. Hence, a relation between D and 6,. is 
derived from equations (30) and (31) in the 
following way. 

Equations (7), (11), (13) and (16) are substituted 
into equations (30) and (31), where the friction 
velocity v .2 is written with the aid of equation 
(18). When the integrations are carried out, 
both the right-hand side of equation (30) and 
v .2 are expressed in the form E' sin qs + F'(cos qs) 
sin qs, where E' is constant and F'(cos qs) is a 
function of cos ~s. The terms reduced to the 
symbol E' relate to the basic relation between 
the wall shear stress and the driving force of 
the secondary flow. The equation (30) is under- 
stood to consist of the terms E' and the terms 
F'(cos qs) which represent the local deviation of 
momentum flux from the mean value. The 
terms F'(cos ~s) are supposed to determine the 
deviation of 6 from 6,.. In order to obtain 6,,, 
the terms E are considered. They appear such as 

/9,2 ~ [ ( 2 m -  1)2] (2m-1)/" 

--+ 4(2m - 1)Lm-~m 2_- i).] 

x D6m [(m+ 1)/"1 Re(, .  - l)lm 

6 
r c~,. R e  2 

0 
6 

s in~ ~ 2 2 m -  1 Re 2 
~- j w  de ~ 4(2m + 1) 6,,, f t .  

0 

Equating these terms, we have 

D6m[(2ra+ 1)/m] _ 2(2m - 1) 
ctm(2m + 1) 

x P m(4m --- ')-I `2"~',/' ' l 
L (2m _ 1)eJ Re(,.+ 1)/,. --H" (32) 

From equations (29) and (32), D and 6,. are 
obtained as follows. 

D = D R e  "1("+ i) H - [ l I 2 ( " +  i)] (33) 

where 

log/)  - 

r~ 

where 

l o g  ~,~ - 1 m + 1 {¼(3mlog(2m + 1) 

+ (15m - 8)log(2m - 1) - (7m - 4) 

1 
m + 1 [¼{(2m - 1)log(2m + 1) 

+ (18m - 5) log(2m - l) - (10m - 1)logm 

- ( 6 m -  5 ) l o g ( 4 m -  1 ) - ( 2 m +  l) 

x log (6m - 1) - (14m + 5) log 2} 

+ m log ~] (33') 

= ,$,,,Re [l/(m+l)lH"/[2(m+l)] (34) 

× [logm + log(4m - 1)] - mlog(6m - 1) 

- 9m log 2) + m log ct}. (34') 

4. The resistance coefficient 
The definition of the resistance coefficient 

for a curved pipe is given by equation (8) when 
R d0 is put in place of c~Z. By using the non- 
dimensional quantities we write 

16 
2< = ~ C. (35) 

When equation (23), in which 6 ,  is given by 
equation (34), is substituted into equation (35), 
the following formula for 2c is obtained. 

2< 7 I a )  = ~c [Re (a /R)  (m/z)] 1/(,. + 1) 

A,~ 
X [1 q-[Re(a/R)(rn/2)]l/("+l t (36) 
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where 

1 
log ~t, - m+l--  {¼( - 3 log (2m + 1) 

+ (16m - 7)log (2m - 1) - (8m - 3) 

x [log m + log (4m - 1)] + log (6m - 1) 

+ 9 log 2) + m log ct} (37) 

1 
log Aa - - -  {¼(3m log (2m + 1) 

m + l  

- ( 1 5 m  + 4 ) l o g  m + ( 1 9 m  - 4 ) l o g  (2m - 1) 

- ( 7 m  - 4)  l o g  ( 4 m  - 1) - m l o g  ( 6 m  - 1) 

- 9m log 2 )  + m log ~}. ( 38 )  

The formulae for 2, derived from the com- 
monly used formulae for 2s in the form of 
equation (9) are shown in the following para- 
graphs. 

According to the Blasius's formula 2., = 
0.316 Re -~-, we put m = 4, and for this case we 
denote 2~ and 2, by 2~4 and 2~4 respectively. 
Since ~t = 0.316, equation (10) now becomes 

if,2 = 0-0233 if} ~i ~. (39) 

It may be seen that the expression (39) is 
in good agreement with experimental data, if 
the coefficient 0"0233 is modified as 0.0225. 
Therefore, the value of ~ equivalent to the 
modified coefficient, that is 0"305, had better 
be used in the calculation after equation (10). 
Hence, in equations (37) and (38), by putting 
at = 0-305. Equation (36) becomes 

2,4 / ( J ' ~  _ 0"300 
[Re (a/R)2] t 

0-112 
x {1+ [Re(a/R)2]~, }. (40) 

This formula agrees well with Ito's empirical 
formula 

2, ~/(R/a) = 0"029 + 0.304 [Re (a/R)2] -°25 

over the latter's application range 300 > 
Re (a/R) 2 > 0.034. 

Ito [7] also made the analysis using the -~ 

power law, and obtains the result 

2, x/(R/a) = 0.29~[Re (a/R)2] ~. 

This formula gives the value 7-8 per cent 
less than that from his empirical formula. The 
discrepancy is caused by lack of reasonable 
consideration of velocity distribution in the 
boundary layer in Ito's analysis. The latter 
term in the bracket of equation (40) or (23) is 
due to the term of (6.,) in equation (20). 

If only w x is used to calculate the mean 
velocity, it is found that A = Re~2. 

In that case, the velocity profile of the core 
region is assumed to extend over the whole 
cross section and the presence of the boundary 
layer is ignored. In Ito's analysis [T], the 
relations between the unknown quantities are 
not given in simple forms, and the complicated 
procedure of calculation makes it difficult to 
obtain 2c in the form of equation (40). 

In order to obtain the formula for fairly 
large Reynolds numbers we put m = 5. The 
formula for a straight pipe is 2s = 0"184 Re -~. 
We denote 2 s and 2, by 2s5 and 2,5 respectively. 
The equation (36) becomes 

2c5 x / ( a )  - 0'192 
[Re (a/R)2"s] ~ 

0-068 
x 1 + [Re(a/R)2.5]tj. (41) 

A further remark should be written about 
equation (36). For  laminar flow we put m = 1. 
As reported in the previous paper [1], 2, x/(R/a) 
becomes a function of Dean number 

[Re x/(a/R)]. 

We denote 2c by 2~x in the laminar region. 
From equation (36) it is found that 2, is 

almost proportional to (a/R) ~/2~'+1). As the 
value ofm increases, the difference in radius ratio 
has  still less influence on 2,. The tendency is 
shown in Fig. 4. In the present discussion, as a 
matter of course, eases in which the radius 
ratio is so large that the state of flow is not so 
different as the one in a straight pipe and little 
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importance in engineering applications is found, 
are excluded. 

The bend of a curve indicating the transition 
from laminar to turbulent flow is written 

found that Re's- 5.0 x 104. Since Re'> Re~, 
equation (43) is not available for R/a larger than 
170. For  such large R/a, it is recommended to 
use Re~ as the lower limit for 2c5. However, 

X 

Xc= , R / o =  20 

• ~ X c l  ,R/o=I00 
o,  

Xsl = 64 Re-I"N,,j ~ ' ~  

I 
Recr 

(=2300) 

O.OI 
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= 100 
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k:5, R/o = 20 

Xc5 = 0.184 Re -I/5 

io  3 tO 4 

Re 
FIG. 4. 2-Re diagram. 
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according to the Ito's empirical formula for 
critical Reynolds numbers [7]. 

Re¢, = 2 x lO4 (a/R) °'32. (42) 

The Reynolds number at which 2¢4 comes to 
exceed 2¢1 increases, as R/a decreases. This fact 
seems to imply the same inclination of Re¢, 
as shown in equation (42). 

Similar criterion are written for the Reynolds 
number Re' which dermes the lower limit of 
the application range of 2¢5. The real limit is 
not obvious because of the continuous change 
of actual 2¢. Therefore, we define it roughly as 
the Reynolds number at which ;~c5 comes to 
exceed 2c4. From equations (40) and (41) it is 
found that 

Re '= 6"5 x 105 ~/(a/R). (43) 

If, for a straight pipe, the,Reynolds number 
determined in a similar way is-taken to be the 
cri t icalpoint for the choice of 254 or 2~5, it is 

because of little difference between 2~4 and 2c5 
in the slope of the curves against Re, the avail- 
ability of 2¢4 would fail distinctly at Reynolds 
numbers far larger than Re' given by equation 
(43). Usually, it is difficult to make Reynolds 
number so large in curved pipes. Owing to 
this reason the experimental data obtained up 
to the present by many investigators are in 
good agreement with 2¢4. Therefore, equation 
(40) is convenient enough for practical use. 

To illustrate the increase of flow resistance 
in curved pipes resistance coefficient ratio, 
2J2s, is shown in Fig. 5, 2c4 and 254 being used. 

T U R B U L E N T  HEAT TRANSFER IN A CURVED 
PIPE 

In the present analysis, the condition of 
uniform heat flux is defined as meaning that the 
increasing or decreasing rate of total heat flux 
through a cross section is constant along the 
pipe axis. Since the temperature distribution 
is not symmetrical like that  in a straight pipe, 



F O R C E D  C O N V E C T I V E  H E A T  T R A N S F E R  I N  C U R V E D  P I P E S  47 

1"3 

, ~  1"2 

H 
f 

/ 
I 

I'0 
4 6 8 I 2 4 

f ~  

I 

6 s I0 2 

Re (o/,q ) z 

FIG. 5. 2j2,. 

I 
I 

/ 
I 

• 4 6 8 I 0 0  2 

local heat flux from the wall to the fluid may be 
a function of ~k. This is the same as saying that 
the ~b-averaged heat flux at the wall is invariable 
with the distance along the pipe axis (RO). 

For fully developed flow under this condition 
the time-averaged temperature T can be ex- 
pressed in the form 

T = zRO - G(r, d/) (44) 

where z is a constant temperature gradient 
along the pipe axis, and G(r, ~) is a function of 
r and qL 

According to Seban and McLaughlin [5], 
there is a temperature variation around the 
periphery of a cross section. However, except 
for fluids having Prandtl numbers considerably 
less than unity, the Nusselt number for fully 
developed turbulent flow is hardly affected by 
the wall temperature condition. This is ascer- 
tained by the results for a straight pipe, for 
example the one given by Seban and Shimazaki 
[10]. The present purpose is to obtain the 
Nusselt number averaged around the periphery. 
Therefore, in the following analysis the wall 
temperature is assumed to be constant with 
respect to ~. Hence, we put 

T w = ~RO. (45) 

Let Q,, Q, be a heat flux in the r-direction 
and the ~k-direction respectively, and write 

Q, Q, 
q~ = k z '  qq' = --~z ' 

G 

Ta  

When r / R  is so small as assumed in the flow 
field analysis, the energy equation becomes 

q•l (tlq") Oqq, = Pr  w. (46) 

Heat fluxes are 

" } q" = - -Oq + P r  (u9 + u'o ')  
(47) 

dO 
q~' = - ,tg-~ + P r  (vo + v'o') 

where u'o', v'q' are heat fluxes due to turbulent 
fluctuation. 

The temperature distribution in a pipe is 
considered to be determined mainly by the 
effect of the secondary flow like the velocity 
distribution. The contribution of the secondary 
flow of heat transfer is supposed to be pre- 
dominant in the greater part of a cross section. 
Accordingly, only the terms uo, vo are taken 
into account in the flow core region. 

1. T h e  tempera ture  f i e ld  in the core region 
When g in the core region is denoted by g l, 

the heat fluxes are 

qn = Pr  u191, q ,  = P r  va01. (48) 

Substituting these into equation (46), we find 

601 
u1 + vl q--~ = wa. (49) 

The dimensionless-temperature 9a is written 
in the following form so as to satisfy equation 
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(49) in which ul, vb and wl from equation (7) 
are substituted. 

91 = A' + (C/2D2)rl 2 + (A/D)rlcos~9 (50) 

where A' is a constant. 
The constant A' is determined by considering 

total heat balance about a cylindrical slice of the 
fluid occupying a cross section of the pipe. It is 
necessary to know beforehand the relation which 
creates the local heat flux from the wall to the 
fluid. 

2. The heat f lux  at the wall 
When the heat flux at the wall is denoted by 

Qw, the non-dimensional heat flux is given by 
qw = Q~/kz. Interest is now concentrated on 
the small local portion of the fluid adjacent to 
the wall. The mechanism of heat transfer in 
that place is supposed to be the same as that 
observed in a straight pipe. In other words, 
when the velocity and the temperature at a 
given distance from the wall are specified, 
Qw is determined by the law applicable to that 
existing near the wall in a straight pipe. Thus 
the relation between the non-dimensional vari- 
ables, qw, 3, ff and g is derived from the Nusselt- 
number formula for a straight pipe. 

The formula is usually based on the mixed 
mean temperature. In order to obtain the 
local relation, the mixed mean temperature 
should be disintegrated into the velocity and 
the temperature. The expression for the tempera- 
ture distribution in a straight pipe is found in 
the theoretical paper by Martinelli [11]. How- 
ever, it is not suitable for the present analysis 
owing to the rather complicated structure. 
Hence, we begin with the discussion of a 
straight pipe. 

The Boussinesq expressions for the shearing 
stress and the heat flux are, in the dimensionless 
forms, 

(1 ev) d~ (51) f = + d ~  

_ E d0 
q = 1 + r r - l -z - ;  (52) 

v / a ¢  

where e is the eddy diffusivity taken equally 
for heat and momentum. 

The assumption is made that the ratio f / q  
remains constant in the transverse direction 3. 
This assumption is generally used in the 
elementary theories of turbulent convection. 
Thus, from equations (51) and (52) the ratio of 
qw to the friction velocity is written in the form 

qw v + Pr e dg 
~ , , z -  v +  e dr" (53) 

Near the wall, the coefficient (v + Pr e)/(v + e). 
may be expressed mainly as a function of 
Prandtl numbers. We divide the flow field into 
three regions as usual. The regions where the 
effect of the Prandtl number is important are 
the laminar sublayer and the buffer layer. In 
both regions, we reduce the coefficient to the 
following form 

v +  P r e  
_ _  _ p r  1 - ~ o  (54) 

v - b E  

The exponent (1 - 7o) would be chosen for 
the appropriate range of Prandtl and Reynolds 
numbers. Hence, equation (53) becomes 

qw = prl_~o__dg (55) 
~,2 dr" 

In the turbulent core region, where the effect 
of turbulent fluctuation is predominant, equa- 
tion (53) becomes 

- Pr do. (56) qw 
~,2 dff 

Suppose that the interface between the tur- 
bulent core and the buffer layer exists at ~ = ~b, 
and denote g, ~ at the interface by gb, ~'h re- 
spectively. The integration of equation (55) 
yields 

qw = pr l - ro  ~_. (57) 
if,2 wl ' 

From equation (56) 

g - - g b = ~ r  -- . 
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When the 1 / ( 2 m -  l) power law is used, the 
velocity distribution is expressed by 

(if/fib) = (~/~b) 1/t2m- 1) (59) 

Equation (59) is substituted into equation 
(58) and elimination of (q~/w .2) from equations 
(57) and (58) yields g in the turbulent core. 

g = gb{Pr-r°[(~/~b)  ~/~2=-~)- 1] + 1}. (60) 

For the simplicity in calculation, equation 
(60) is approximated by 

= gb (~/¢b) (1/n°) (61) 

where 

no = P d  °(2m - 1). 

Comparison between the equation (60) and 
(61) is shown in Fig. 6 and the above approxima- 
tion is found to be reasonable. 

If we put ~ = 6 in equations (59) and (61), 
it is found that 

~vb = Cv~ (~d6) ~/~2m- ", ~ = ~ (~d6) "~° 

where the suffix 3 denotes the value at ~ = 6. 
Substituting these into equation (57), we find 

qw = Pr l -~°  if,2 (~/f f~)(~b/6)(l /no)-t l /(2ra- 1)]. (62) 

When the temperature distribution bears a 
close resemblance to the velocity distribution, 
n o is nearly equal to 2m - 1, that is, the exponent 
of (~b/6) in equation (62) is near zero. Thus qw 
depends on the Prandtl number through Pr ~ -ro 
alone. However, this discussion may be allowed 
in the very limited range of Prandtl numbers 
about  unity. In order to obtain the results 
applicable in the relatively wide range of 
Prandtl numbers, we put 

pr  1 - ~ o  (~b/6)(1/no)-[1/(2ra- 1)1 = ( p r  ~. (63) 

The left-band side of equation (63) is a 
function of Pr, 6 and Re which determines ~b. 
The coefficient ~ and the exponent x are con- 
stants which should be chosen so as to approxi- 
mate the true function in the appropriate range 
of these variables. 

The Nusselt number is defined by 

N u  = 2aQw = 2qw (64) 
k ( T w -  Tin) g= 

where g= is the dimensionless difference between 
Tw and, the mixed mean temperature, Tin. When 
the suffix s is used to denote the case of a 
straight pipe, g,~ is given by 

1 

g.,~ = (4~Re) S g~' r/d~/. (65) 
0 

This is calculated by substitution of equation 
(61) and ff following the 1/(2m - 1) power law. 
Heat flux qw from equation (62), in which 
equations (10) and (63) are substituted, and 
g=s yield the following Nusselt number for a 
straight pipe. 

-- 1) 2 (2m + 1)pr ,  Re(m_l)/m 
Nu  s = ct( (2m4m(4 m _ l) 2 Y(66) 

where 

6 m +  1 
4m(2m + 1) (1 

pr-~O) 

1 
+ 

4m(2m + 1) ' l  

× (1 - Pr-r°)~ 6 - t l / t2m-l) l ( l -e ' -~  ) (67) 

In fluids having Prandtl numbers different 
from unity, the strict analogy between heat and 
momentum transfer, in the sense usually em- 
ployed in the elementary theories of turbulent 
convection, is unlikely to exist. The exponent of 
Re in the Stanton number formula which is 
formed by dividing N u  with Re Pr  is not always 
identical with that in the resistance formula. 
When the same amount of qw is supposed to be 
given to various fluids, difference in the exponent 
is caused by the effect of Prandtl numbers on 
the mixed mean temperature. The temperature 
distribution is more flattened as the Prandtl 
number increases. In the present analysis, this 
contribution of Prandtl numbers is expressed 
by Y. 

The behaviour of Y against Pr ~° is shown in 
Fig. 7. It is found that use of large m lessens the 
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effect of Prandtl numbers. The values of 
represent the order of magnitude of boundary- 
layer thickness expected in a curved pipe. The 
case of 6 = 0"1 is found when Re  (a/R) 2 - 100. 

This is in general the case when Re  is very large. 
For such a large mean velocity region, choice 
of large m makes the curve of Y come near the 
line of unity. Moreover, in the region of high 
Prandtl numbers, if a large value of m is pre- 
ferred regardless of the magnitude of Re, the 
deviation of Y from unity can be diminished. 
For fluids of Prandtl numbers about unity, 
the value of m should be the same as that in 
the resistance formula. For other fluids, it is 
assumed that m in the Nusselt number formula 
implies the effect of Prandti numbers, and the 
value different from that in the resistance 
formula can be chosen in the Reynolds number 
region under consideration. With this under- 
standing we put Y = 1. As a matter of facL 
this assumption is equivalent to the following. 
Instead of the real temperature and velocity 
distribution, the one supposed to be the same 

I-2 

1.0 

I 2 4 6 8 I0 

pr~ 
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Pr 
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20 

1 m = 4 /  
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,6o 

for temperature and velocity is considered. 
This equivalent distribution follows the l/ 
(2m - 1) power law, The index m is chosen with 
the coefficient ct from the resistance formula, 
so as to give the real Nusselt number from 
equation (66) without Y. 

Below the abscissa of Fig. 7 an estimation 
of Pr against Pr ~° is shown. The exponent 7o 
is determined to give the agreement between 
0 from equation (61) and the distribution 
obtained by Martinelli [11] as shown in Fig. 8. 
The values of 7o are 

Pr = 1 ,-, 1'5, 7o---2, 

Pr > 1'5, ";o = 0"7. 

The previous steps relating to heat transfer 
in a straight pipe are now summarized and 
applied to the analysis for a curved pipe. The 
dimensionless temperature difference 06 and 
the velocity w6 are replaced by 016 and wl6 
respectively, where 916 is the value of 91 at 

= 6. When the Nusselt number for a straight 
pipe is given in the form 

Nus = fl Re  (m- I)/,. p r  ~ (68) 

the local heat flux at the wall qw in a curved pipe 
is expressed by 

qw = OwPr~w(~-l)/m 6-( l /" )  91~ (69) 

where 

qw = 2 -[~"+ 1)/=1 
[(2m _ 1):l~,,- 1)/m 

4 m  - 1 
× - - / 3 .  (70) 

2 m +  1 

In order to ascertain the relation, Martinelli's 
results [11] are calculated numerically, and 
rearranged into the forms of equations (68) 
and (69) independently. In the region where the 
Prandtl number is near unity and the Blasius's 
resistance formula is applicable, Nu~ and qw are 
written as follows : 

Nu~ = 0-038 Re ~ Pr ~ (71) 

qw = 0"023 Pr ~ w ~  6 -  ~'- 91 a. (72) 
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On the other hand, when we start with 
equation (68), we put fl = 0"038, m = 4 and 
x = ½ according to the equation (71). It is 
found that qw from equations (69) and (70) is 
the same as that of equation (72). 

From equation (50), gx~ is obtained by 
putting q = 1 - 6. Equation (17) and gl~ from 
equation (50) are substituted into equation 
(69). When the expansion (18) is used, qw 
becomes 

qw = (lw P r~ 6 -(1/") A (" -  1)/" 

C m - 1  
x A'+-~-~+--m 

x r 2 m ( 6 m - 1 ) l l ~ A c o s 2 ~ O  
[(4m 2 - 1 ) (4m-  

+ [ _ ~ (  2 m ( 6 m - 1 )  ) 
k(4m 2 - 1 ) (4m-  1)} 

t 
3. Determination o f  A '  

The portion of fluid bounded by the pipe 
wall and two cross sections apart by a distance 
R dO is considered. The heat balance equation 

for this control volume is 

/ t  ff a 

w a dO = 0 cp-~-~z W T r  dr d 0. (74) 

This is expressed in the following dimension- 
less form : 

Re Pr  
(75) qw" - 4 

where q , "  is the mean value of qw around the 
periphery of a cross section. 

From equation (73) qw,, is obtained 

qw,. = q., P r~ 6~, (x/") A ("-  1)/m 

C m - 1  
x A ' + ~ +  2 ~  

1- 2 m ( 6 m -  1) 
×1(4m2-1) (  4 m -  1) 1 A}. (76) 

When A, C, D and fir. given respectively by 
equations (20), (23), (33) and (34) are substituted 
into equation (76), A' is determined from equa- 
tion (75) as follows : 

2' 
a '  = (Pr I -~ - Aa, ) 1 + [(m - 1)/m 2] fir. 

x Re  x/("+ x) H1/2("+ l) (77) 

where 

4 m ( 4 m -  1 ) (6m-  1)fl 
AA, = (4m 2 -- 1) 2 a (78) 

1 
log A' - - -  {¼[(4m + 7)log (2m + 1) 

m + l  

+ (4m - 7) log m - log (6m - 1) 

- 11 log(4m - 1) - (8m - 15)log(2m - 1) 

- 9 l og  2]  + log  a} - log ft. (79) 

4. The  energy integral equation o f  the boundary 
layer 

In the boundary layer, heat transfer due to 
viscous and turbulent diffusion exists with that 
caused by the secondary flow. The effect of the 
former is implied in qw. The energy integral 
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equation is written 
,} h b 

Pr  gl~ v d ~ -  gvd~ ÷ wd~. (80) 
0 0 0 

We put the dimensionless temperature dis- 
tribution in the boundary layer as 

g = glo(~/6)  ~/" (81) 

where n is the unknown exponent to be deter- 
mined from equation (80). 

Equations (11), (13) and (81) are substituted 
into equation (80). When only the largest 
terms are considered, it is found that the sum 
of convection terms due to v is equal to qw/Pr. 
The contribution of w is neglected, because it 
has an order of magnitude less than that of the 
other terms. Performing the integrations in 
equation (80) yields 

q w =  Pr  os20 m -  1 

l/n) + [1/(2m - 1)] + 1 (l/n) + 

× (cos2 @ - sin2 qJ + Pr  D ' + 

),( - -  _ _  

m - i 1/n) + [1/(2m - 1)] 

1 _']l cos ~. (82t 
(l/n) + 

We find that the mean value of q,~ from equa- 
tion (82) satisfies the relation given by equation 
(75). Similar to the analysis of flow field, the 
terms in the first bracket of the right-hand side 
are replaced by the mean value of qw. Equating 
the coefficient of cos ~9 from equations (73) and 
(82), we find 

1 3 m -  1 

n 2 m -  1 

[ ( 3 m - -  lX] 2 4m L L ] ~  
+ L\2m - I] + 2rn 2 1 1 - (83) 

where 

L = 4 m 2 ( 4 m -  1)(6m- 1 ) f l p r  ~1-.~ 
( 2 m -  1)3(2m + lJ 2 

p~ 4m(4m - 1 )2  ! _ - )  + . . . . .  
x L m (2m - -  1 t 2 (2m + 1 ) 

fl I1 K t x P r -  
O~ 

(84) 

When m, ~, fl and • are chosen from a Nusselt 
formula for a straight pipe as shown in the 
next section, n can be determined. When we 
put Pr  = 1, 

n =  2 m -  1. (85) 

Since the assumption which allows m to 
imply the effect of Prandtl numbers is intro- 
duced in Section 2, the value of n for another 
Pr  seems to lack a reasonable ground. Rather, 
equation (85) is interpreted as the exponent 
which gives the equivalent distribution con- 
sidered in Section 2. Hence, we use equation 
(85) in calculation of the mixed mean tempera- 
ture, T,,. It should be noted that rough estima- 
tion of T,, is obtained by extending gl and Wl 
over an entire cross section. When T,, is calcu- 
lated more precisely, the distribution of g in 
the boundary layer is used to modify gl near 
the pipe wall. Thus, the exponent n forms a 
correction term in the Nusselt number formula. 
Consequently, the variation of n does not have 
a remarkable effect on Nusselt numbers. 

5. Nusse l t  numbers  
In equation (64), the dimensionless mean 

heat flux q,,. given by equation (75) is put in 
place of qw. Then, the Nusselt number in a 
curved pipe N u  c is written, 

2qw,. R e  Pr  
Nuc - - (86) 

g,. 2g,. 

where 
n 1 6 

g" -- ~ R e  g l w l ~/drl dO 
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n 6 

Using all the knowledge obtained about the 
temperature and velocity field, we may calcu- 
late equation (87) by the order of magnitude 6. 
Equation (86)becomes 

1 Pr 
Nu~ = 24 '  Pr 1-~ - Ag,. Rem/~"+ U 

¢) {, ,t,88, × 1/I2~,,+ 1~1 4 [Re (aiR)m/z] 1/~"+ 1 

where A' is given by equation (79). and 

4 ( 6 m -  1 ) (4m-  1 ) m ( m -  1)fl 
= (89) A9,, (2m + 1) 2 ( 2 m -  1) 3 

4m 2 - 2m - 1 ^ 
AN" = m2(2m + i) 6,.. (90) 

The coefficient 6,, is obtained from equation (34'). 
If we take equation (71), we have 

fl = 0.038, x = ½, m = 4. 

The equivalent resistance formula is 2~4 
given by Blasius. The modified value of coef- 
ficient, a = 0.305, is employed as in the deriva- 
tion from the resistance formula to calculate 
Nu¢. In this case equation (88) becomes 

Pr 

Nuc = 26-2(Pr ~ - 0.074) 

(R)~ { - 0'098 ~ 
x Re~ 1 + [Re(a/R)Z]~j .  (91) 

This formula agrees well with the experi- 
mental results for air as shown in Fig. 9. In the 
figure, the experimental data, the theoretical 
curve for laminar air flow in the region of large 
Reynolds numbers, which is drawn from the 
curves for first and second approximation [1], 
and Nu~ given by equation (71) are also shown. 

For gases, of which Prandtl numbers are in 
the neighbourhood of unity, the conclusive 
discussion of resistance coefficients may be 
applied to the Nusselt number formula. Namely, 

the applicability of equation (91) obtained by 
putting m = 4 remains well except for extremely 
large Reynolds number. Equation (91) seems to 
be available for practical use. 

Most  of the experimental data for water are 
arranged into the form Nuc Pr-0 .4  [4-6]. This 
form is introduced from the following con- 
ventional formula for a straight pipe. 

Nu~ = 0"023 Re °'s Pr °'4. (92) 

If the derivation of Nuc is based on equation 
(92), 

fl = 0.023, m = 5, tc = 0.4. 

When these values are used, Pr x -~/(Pr 1 -~ - 
AO,,) in equation (88) comes near unity for large 
Pr as shown in Fig. 10. Therefore, in the range 
of large Prandtl numbers, it is convenient to 
put 

pr  ~ - ~ 
1 (93) 

prX-~ _ A9, . 

for the simplicity of calculation, and for direct 
comparison with the empirical formulae sug- 
gested by some experimenters [4-6]. 

It must be noted that this approximation 
more or less compensates for the over estima- 
tion caused by putting Y -- 1 in equation (66). 
In the derivation of Nus from qw, assumption 
of Y = 1 causes underestimation of Nus. It is 
conversely written that qw given by equation 
(69) may be larger than the value equivalent 
to Nus from equation (68), and gives a slightly 
higher value of Nu~. Thus, we may write the 
Nusselt number formula for liquids which have 
in general high Prandtl numbers as follows: 

N u ~ P r - ° ' 4 = 4 ~ . o R e ' ( R )  ~ 

1 0"061 _'~. (94) 
x + [Re (a/R)25]t j  

Equation (94) is compared with the empirical 
formulae in Figs. 11 and 12. The empirical 
correlations are listed below. 
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FIG. 9. The theoretical curves for N u  c and the experimental results. 

Pratt [4]: 

Nu~ Pr f  o.4 = 0.0225 (1 + 3"4 a/R) Re °'s. (95) 

Seban and McLaughlin [5] : 

Nu~Pr-~ °'4 = 0"023 (a/R) °'x Re~ sS. (96) 

Rogers and Mayhew [6]: 

Nuc Pr~ °4 = 0.021 (a/R) °'1 Re} "aS (97) 

Nu c Pr~ -°'4 = 0.023 (a/R) °'1 Re °'ss. (98) 

The suffixes b and f denote evaluation of 
physical properties at bulk (mixed mean) and 
film temperatures respectively. 

The Reynolds number exponent of 0.85 
used in equations (96--98) is in the vicinity of 
the present result ~ =  0.833...). The difference 
in the radius ratio exponent does not have a 
significant effect on Nuc, because in any formula 
it is very small. Bearing in mind the accuracy 
of experiments, we may conclude that equation 
(94) agrees well with the experimental results. 

From equations (68) and (88), the ratio of 

Nuc to N G is expressed as 

Nu c Pr i - K 

Nu,  2.~' fl (Pr* - ~ - d g r a  ) 

× [Re (R)'~/2] */t'tm+ l'] 

x 1 + [Re(a/R)m/2]l/(m+l~j. (99) 

The values of m and e used up to now are 
given to equation (99). Figure 13 and Fig. 14 
show the increase of Nusselt numbers for gases 
and liquids respectively. Though many formulae 
for Nu, are suggested, Fig. 14 would be available 
for rough estimation of Nu~ for any kind of 
liquid. However, the experimental data for 
oil have not been fully established. The absence 
of data is due to difficulties in making viscous 
oil turbulent especially in a curved pipe where 
transition from laminar to turbulent occurs at 
higher velocity than in a straight pipe. 

Equation (99) shows that the difference 



between Nuc and Nus decreases slightly as Pr 
becomes large. This behaviour is in contrast 
with the results for laminar flow [1]. The opposite 
inclination is caused by the difference in 
mechanisms of heat transfer which can be 
seen in the formula of Nus for laminar flow 

= ~ )  and for turbulent flow (Nu~ oc Pr~). (Nus ,*s 
Similar discussion to that about ,t.< can be 

i-2 
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Pr  

FIG. 10. P r  I - ~ l ( P r  i -'< - A(J.). 
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FIG. 11. Comparison of the theoretical results with the 
empirical formula [4-]. 

and temperature distributions inside the pipe 
were measured by inserting probes through little 
access holes at the pipe wall far downstream of 
the inlet. One of the measured distributions is 
shown in Fig. 15. The profiles show a steep 
gradient of velocity and temperature near the 
pipe wall. The presence of the boundary layer 
is ascertained. 
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FIG. 12. Comparison of the theoretical results with the 
empirical formulae [-5, 6 ]. 

made from equation (88) or (99). As the value of 
m to be applied becomes large, the difference 
in R/a has less influence on Nuc. 

EXPERIMENTS 

Experimental investigation in air flow was 
done on two cases of radius ratio, 40 and 18.7. 
The pipes were heated by nichrom wires wound 
around them. The heating wires were divided 
into several sections along the pipe axis. By 
adjusting electrical power input to these sec- 
tions, a constant wall temperature gradient 
along the pipe axis was maintained. The velocity 

The detailed description of the experimental 
apparatus is given in the previous paper [1]. 
The curved pipe of R/a = 40 is the same as 
that used for laminar flow case [1]. 

The pipe ofR/a = 18.7 is of steel and has the 
following dimensions: 

Inside diameter 2a = 53.6 mm 
Wall thickness 3"5 mm 
Radius of curvature R = 500 mm 
Angle of 0 between the inlet and the outlet 

300 degrees. 

A cross section of the pipe does not form a 
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complete circle because of distortion caused 
by bending. Difference between the maximum 
outside diameter and the minimum diameter at 
a cross section is 2 ~ 3 mm. The inside diameter 
is obtained by converting a cross sectional 
area, which was found by cutting a test piece from 
the pipe, to an area of a circle. This equivalent 
diameter differs about  1 per cent from the 
original diameter prior to bending. 

Cu -Co  thermocouples for measurements of 
the wall temperature were buried in the wall 
to the depth of 2 m m  from the surface. The 
temperature drop due to conduction through 
the wall was taken into account, but the cor- 
rection gave little change on measured Tw. The 
thermocouples are located at 9 stations at 
intervals of 30 degrees in 0. The velocity and 
temperature distributions were measured at 
0 = 150 ° and 210 ° (the inlet of the curved 
pipe section is at 0 = 0°). The distribution 
profiles are found to be similar to those for 
R/a = 40. 

For  both cases of radius ratio, wall tempera- 
ture variation around the periphery of a cross 
section was checked at two stations by attaching 
four thermocouples at the top, bottom, inner 
and outer side of the wall. (The curved pipe is 
placed so as to let the centre of curvature and 
the pipe axis be in a horizontal plane.) The wall 
temperature Tw used in plotting the temperature 
distribution and calculating the Nusselt number  
is the mean value around the periphery. The 
deviations from the mean value are, for example, 

+ 1.3Y'C at the inner side, - 1.15~C at the outer 
side, +0.05°C at the top and -0 .25°C at the 
bot tom when the mean wall temperature = 
44"15°C, T,, = 24.6°C, T = 6.2°C/m, Re = 3.6 x 
104, R/a = 18.7. It was found that evaluation of 
Tw at a fixed peripheral location introduces an 
error of several per cent at worst in Nuc. How- 
ever, this example is the worst one. The varia- 
tions found throughout the experiments for 
R/a = 40 are far below the above example. 

From the esperiments, Nusselt numbers are 
obtained by the method shown in the previous 
paper [1]. The rough description of the method 
is given here. Mean heat flux at the wall Qwm 
is written from equation (74) 

Qw,, = ¼rk Re Pr. (100) 

Therefore, the wall temperature gradient 
obtained from the measured wall temperature 
distribution gives Qw,,. The velocity and tempera- 
ture distributions on a horizontal line are 
assumed to have similar profiles to those 
obtained by transversing through the centre of 
a cross section. Both distributions extended 
over a whole cross section are utilized to 
multiply numerically temperature by velocity 
dividing the cross section into small parts. 
Thus, the mixed mean temperature T,. is 
computed. The physical properties are evalu- 
ated at T,.. The results are shown in Fig. 9. 
The data for R/a = 40 agree well with the 
theoretical curve of a fully turbulent region. 
The data for R/a = 18.7 at Re = 2.7 x 10 4 
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and 3"6 x 104 are found to be below the 
analytical result. In these cases a little irregular 
temperature rise along the pipe axis (0) caused 
inaccuracy in determining Qw,,. The experi- 
mental point at Re -- 1.9 x 104 is obtained by 
determination of z from fluid temperature rise 
which was measured by inserting the thermo- 
couple probe at several stations along the pipe 
axis. The same method for obtaining Nusselt 
numbers experimentally was applied in the case 
of the straight pipe. The straight pipe is of brass 
and 35.6 mm in diameter. The velocity and 
temperature distributions were measured in 
the region where both profiles were fully 
developed and the effect of buoyancy was 
negligibly small. The results are shown in Fig. 9 
and are in good agreement with Nu~ given by 
equation (71). 

CONCLUSIONS 

Turbulent flow and temperature field in a 
curved pipe fully developed under the condition 
of constant heat flux were analysed by theory 
and experiment, and the following conclusive 
results were obtained. 

(1) The theoretical analysis of a flow field 
was done by assuming a thin boundary layer 
along the pipe wall. Frictional stress at the wall 
was derived from the resistance formula for a 
straight pipe expressed by 2s oc Re -1/m. The 
result shows that the resistance formula for 
a curved pipe is given in the form of 2c ~/(R/a) 
which is a function of Re (a/R) m/2. One of the 
resistance formulae is obtained by putting 
m = 4 according to the Blasius's formula for 
2s and taking into account not only the velocity 
profile of a flow core occupying the greater 
part of a cross section but also that of the 
boundary layer. The formula agreed well in a 
fairly wide range of Re (a/R) 2 with Ito's empirical 
formula [7] which summarizes the data of many 
investigators. 

(2) The analysis of heat transfer was done by 
deriving heat flux at the wall from the Nusselt 
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n u m b e r  f o r m u l a  for a s t ra igh t  p ipe  expressed  by 

N u  s oc R e " - ~ / "  Pr  ~. T h e  gene ra l  exp re s s ion  of  

the  Nusse l t  n u m b e r  for a c u r v e d  p ipe  Nu~ was 

o b t a i n e d .  T h e  r a t io  Nu~/Nu~ is exp re s sed  as a 

f u n c t i o n  o f  R e  (a/R)  m/2 a n d  Pr. 

T h e  f o r m u l a  for gases  (Pr ~ 1) g iven  by 

pu t t i ng  m = 4 is in g o o d  a g r e e m e n t  wi th  the  

e x p e r i m e n t a l  d a t a  of  air. T h e  f o r m u l a  for l iqu ids  

(Pr > 1) expres sed  in the  f o r m  o f N u ~  Pr  - ° ' 4  by 

p u t t i n g  m = 5 a g r e e d  wi th  the  e m p i r i c a l  f o rm-  

u lae  sugges ted  by s o m e  e x p e r i m e n t e r s  [4--6]. 

F igu re  13 and  Fig. 14, s h o w i n g  Nu~/Nu~, migh t  

be ava i l ab l e  for  r o u g h  e s t i m a t i o n  of  Nu~ t h o u g h  

a di f ferent  f o r m u l a  o f  Nu~ is to  be a p p l i e d  

a p p r o p r i a t e l y  to  v a r i o u s  cases. 

(3) W h e n  f low is t u rbu l en t ,  2~ a n d  Nu~ do  no t  

s h o w  such  a r e m a r k a b l e  inc rease  f r o m  2~ a n d  

Nu.~ as found  in l a m i n a r  f low [1] .  T h e  va lue  o f  

m is to be  c h o s e n  in the  a p p r o p r i a t e  r a n g e  of  

Re  a n d  Pr .  As  R e  or  Pr  increases ,  the  va lue  o f  m 

to be  used  b e c o m e s  larger ,  so tha t  the  d i f ference  
in R/a  has less inf luence  on 2,. and  Nu,.. 

(4) E x p e r i m e n t a l  i nves t i ga t i on  in a i r  f low 

was d o n e  in t w o  cases  o f  R / a  = 40 a n d  18.7. 

T h e  ve loc i ty  a n d  t e m p e r a t u r e  d i s t r i b u t i o n s  in 

the  p ipe  were  m e a s u r e d  k e e p i n g  the  wal l  

t e m p e r a t u r e  g r a d i e n t  a l o n g  the  p ipe  axis  con-  

stant .  App l i cab i l i t y  of  the  b o u n d a r y  layer  

a p p r o x i m a t i o n  was  a s c e r t a i n e d  by the  m e a s u r e d  

d i s t r ibu t ions .  T h e  Nusse l t  n u m b e r s  o b t a i n e d  

e x p e r i m e n t a l l y  a g r e e d  well  wi th  the  t heo re t i c a l  

result .  
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R4sum6--L'effet de la courbure sur le transport de chaleur/l flux de chaleur constant pour un 6coulement 
turbulent enti6rement 6tabli dans des tuyaux courbes a 6t6 6tudi6 th6oriquement et exp6rimentalement. 
On suppose dans l'analyse qu'il existe une couche limite le long de la paroi du tuyau. La contrainte de 
cisaillement locale et le flux de chaleur local/t la paroi sont donn~s dans but de r6duire les formules du 
coefficient de perte de charge lin6ique (2s) et du nombre de Nusselt (Nu~) ~ la relation locale du frottement 
et du transport de chaleur. Lorsque les formules pour les tuyaux rectilignes sont de la forme 2s ~c Re ~ 
et Nu s ~c Re Ira- 1)/,,, on montre que la similitude dynamique et la similitude pour le transport de chaleur 
clans les tuyaux courbes d~pendent de Re (a/RW z. 

Le coefficient de perte de charge lin6ique et le nombre de Nusselt pour les tuyaux courbes sont obtenus 
e n p o s a n t m = 4 o u m =  5. 

Les nombres de Nusselt obtenus/~ partir des mesures des distributions de vitesse et de temp6rature dans 
un 6coulement d'air b, travers des tuyaux courbes tels que R/a = 40 et 18,7 sont en bon accord avec les 

r6sultats th6oriques. 

Zusalnmenfassnng--In dieser Arbeit wird der Einfluss der Kriimmung auf den W~irmeiibergang ftir 
ausgebildete turbulente Str6mung in gekriimmten Rohren bei konstanter W~irmestromdichte theoretisch 
und experimenteU untersucht. Der Analyse wird eine Grenzschicht entlang der Wand zugrundegelegt. 
Die 6rtliche Schubspannung und die 6rtliche W~irmestromdichte werden angegeben um den Widerstand 
(2s) und die Nusselt-Zahl (Nu s) for gerade Rohre auf die 6rtlichen Beziehungen fiir Reibung und War- 
meiibergang zurtickzufiihren. Werden die Gleichungen ftir gerade Rohre mit 2~ ~ Re-t/,, und Nu, 
Retm- l~/m angegeben, so kann gezeigt werden, dass die dynamische ~.hnlichkeit und die Ahnliehkeit des 
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W~irmefibergangs in gekrfimmten Rohren abh~ingig ist von Re(a/R) m/2. Der Widcrstandskoeffizient und die 
Nusseltzahl fiir gekrfimmte Rohre lassen sich erhalten wenn man  m = 4 oder m = 5 setzt. 

Die Nusselt-Zahlen, die durch Messungen der Gcschwindigkeitsund Temperaturvertei lungen in einem 
Luftstrom durch gekriimmte Rohre yon R/a = 40 und 18,7 erhalten wurden, s t immen gut mit theoretischen 

Ergebnissen fiberein. 

Am~oTa~Mi~[--B pa6oTe HpOBO~HTCH aHCl~epHMeHTaZtbHoe n TeopeTHqecHoe Hcc~eKOBaHHe 
BJIHHHHH HpHBH3HIaI Ha TeHJIOO6MeH B HO,rIHOCTbIO pa3BHTOM Typ6y~ieHTHOM TeqeaHH B 
HCHpHBJIeHHMX T p y 6 a x  HpH HOCTOHHHOM TeIIJIOBOM IIOTOHe. YIpH aHa~iH3e IIpHHHMaeTcA 
cyMeCTBOBaHHe HoFpaHHqHOFO CJIOH Ha CTeHHaX T p y f u .  JIoHaJIbHHe HanpAmeH.A TpeHHH H 
~oHazIhH~i~ TenZIOaOfl novoR paccqHwa.bt  na / ~opMyn  conpoTna:IeHHA (A~) ~ q n c ~ a  HyccezIbwa 
(Nus) ~laA npAMUX Tpy6,  npnae~eHHuX H COOTHOmeHHAM noHa: I~noro  wpeHnA n wenno- 
o6MeHa. IIoHaaaHo, qVO B TO BpeMA gaR (popMyJIU ~lnA npAMUX wpy5 ~Iamvca B nH;~e ,~socRe -~/'n 
H g u s o c R e  ~m-D/m, ~IHnaMtlqec~oe n venJxOBOe tio~oSYie HCHpHBJIeHHHX Tpy6 3aBHCHT OT 
Re(a/R) 'n/2. IIoJIyqeHI~I I~O~{~(~HIII4eHTbI conpoTHB~eHI4A n qncJla HycceJlbTa KJIA nc~pnB~eH-  
H U x ~ p y S n p H m = 4 H m = 5 .  

q H c a a  H y c c ~ : n ,  wa, no :~yqcaHue  npH HaMepeHan npoqbn:tei~ cHopocTH n weMnepavyp~[ np~! 
Teqennn  Boa~yxa  B H c ~ p . a : I e n n u x  wpy6ax  n p ~  R/a  = 40 a 18,7 ,  x o p o m o  coraacymwcA c 

weopevnqeC~nMn. 


